Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction

Por um escritor misterioso
Last updated 25 outubro 2024
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. - Abstract - Europe PMC
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
PDF] Fibronectin and stem cell differentiation – lessons from chondrogenesis
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
ACS Biomaterials Science & Engineering
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
ACS Biomaterials Science & Engineering
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Contact angle measurement results of PDMS substrates with different
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Mechanical Signaling in Dental Pulp Stem Cells

© 2014-2024 remont-grk.ru. All rights reserved.